On the Banach space isomorphism type of AF C*-algebras and their triangular subalgebras
نویسنده
چکیده
It is shown that all the approximately finite dimensional C*-algebras which are not of Type I are isomorphic as Banach spaces. This generalises the matroid case given previously by Arazy. Analogous results are obtained for various families of triangular subalgebras of AF C*-algebras. In addition the classification of various continua of Type I AF C*-algebras is discussed.
منابع مشابه
A Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملAlgebraic orders on K0 and approximately finite operator algebras, J. Operator Th., to appear . 51 S.C. Power, On the outer automorphism groups of triangular alternation limit algebras
Approximately finite (AF) C *-algebras are classified by approximately finite (r-discrete principal) groupoids. Certain natural triangular subalgebras of AF C *-algebras are similarly classified by triangular subsemigroupoids of AF groupoids [10]. Putting this in a more intuitive way, such subalgebras A are classified by the topologised fundamental binary relation R(A) induced on the Gelfand sp...
متن کاملCertain subalgebras of Lipschitz algebras of infinitely differentiable functions and their maximal ideal spaces
We study an interesting class of Banach function algebras of innitely dierentiable functions onperfect, compact plane sets. These algebras were introduced by Honary and Mahyar in 1999, calledLipschitz algebras of innitely dierentiable functions and denoted by Lip(X;M; ), where X is aperfect, compact plane set, M = fMng1n=0 is a sequence of positive numbers such that M0 = 1 and(m+n)!Mm+n ( m!Mm)...
متن کاملDerivations on dual triangular Banach algebras
Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...
متن کاملArens regularity of triangular Banach algebras related to homomorphisms
In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994